Evaluation and Intercomparison of Clouds, Precipitation, and Radiation Budgets in Recent Reanalyses Using Satellite-Surface Observations

*Accepted to Climate Dynamics

Erica K. Dolinar

Xiquan Dong Baike Xi

University of North Dakota Department of Atmospheric Sciences

Motivation

- Some progress has been made in predicting the interactions between clouds, precipitation, and the Earth radiation budget, yet still, some error and large intermodel spread still exists
 - Bony et al. 2004, Jiang et al. 2012, Stanfield et al. 2014, Dolinar et al. 2015
- Updated parameterizations successfully increase the skill of cloud and radiation predictions
 - Modelers need to know where to focus their efforts

Goals of this study

- Report on the remaining issues regarding the prediction of clouds, precipitation, and radiative fluxes in five reanalyses (20CR, CFSR, Era-Interim, JRA-25, and MERRA)
- Several NASA and DOE data products are used to evaluate the current reanalyzed fields
 - CERES MODIS/EBAF, TRMM, and ARM

Tasks of this study

<u>Task I</u>: "Global" comparison (12-years of data 03/2000 – 02/2012)

- Current state of reanalyzed results (monthly means)
- Total cloud fraction (CF), precipitation rate (PR), and topof-atmosphere (TOA) cloud radiative effects (CRE)

Task II: Define dynamic regimes and determine their biases

Based on vertical motion at 500 hPa

Task III: Ground-based comparison at ARM sites

 Sites are within or adjacent to defined regimes, provides further validation

Global Comparison: Cloud Fraction (CF)

- High CF in Southern Ocean, Northern Pacific and Atlantic, and the ITCZ
- Low CF in central Pacific and in arid climates (Sahara, Middle East, Australia, and SW North America
- Regional differences as high as 40%
- Overpredict CF over equatorial oceans (except CFSR) and some landmasses
- Underpredict MBL clouds, i.e. Southern Ocean, West Coastal North and South America

All reanalyses (except 20CR) underpredict CF!

Global Comparison: Precipitation Rate (PR)

- High PRs associated with the ITCZ and mid-latitude storm tracks
- Areas of complex terrain (Andes Mountains and Tibetan Plateau) show difficulty in predicting PR
 - Issues with the diurnal cycle, orographic precipitation initiation, and/or mountain shadowing
- Issues with the ITCZ
 - Magnitude and placement of heaviest precipitation, i.e. Stanfield et al. 2015

Reanalyses overpredict PR!

Global Comparison: Net Cloud Radiative Effect (CRE)

- Strongest Net CRE (energy loss)
 over oceans (where MBL
 frequently occur) and over China
- Positive Net CREs occur in the arid climates due to the low frequency of clouds
- CFSR: Strongly underpredicted in the western tropical Pacific but overpredicted in the SE Pacific/Atlantic and Southern Ocean
- JRA-25: Strongly overpredicted in the tropics and extra-tropics, underpredicted in the midlatitudes and over some land masses
- MERRA: Relatively small biases except some areas

Reanalyses overpredict the Net CRE (more energy loss due to the presence of clouds)

Summary I

- CF is underpredicted by all reanalyses (except 20CR)
- PR is overpredicted by the reanalyses

	Observation	20CR	CFSR	Era-I	JRA-25	MERRA
CF (%)	56.7	64.1	53.4	53.9	52.1	55.0
PR (mm/day)	3.0	3.4	3.6	3.4		3.1
SWUP _{toa,all}	96.6	93.2	94.7		97.9	97.2
SWUP _{toa,clr}	48.5		50.0		48.6	49.1
OLR _{all}	253.8	250.4	258.4	260.0	269.7	257.0
OLR _{clr}	281.1		281.3	279.1	288.5	283.6
SW CRE _{toa}	-48.1		-44.7		-49.3	-48.1
LW CRE _{toa}	27.3		22.9	19.1	18.8	26.6
Net CRE _{toa}	-20.8		-21.8		-30.5	-21.5

- Stronger (more energy lost) Net CRE (~1-10 W/m²) due to:
 - Weak (less energy gain) LW CRE
 - particularly due to the all-sky flux
 - Stronger SW CRE (JRA-25)

Task II: Dynamic regimes: vertical motion at 500 hPa

- Strong ascent leading to deep convection in the tropics (ω500 < -25 hPa/day)
- Moderate to strong subsidence creates an environment favorable for low-level MBL stratocumulus clouds (ω500 > 25 hPa/day)
- Relatively constant LW CRE in the descent regime
- Strong increase in LW CRE with $\omega 500$ in the ascent regime

Fig. 2 from Bony et al. (2004) ECMWF ω500 in the tropics (±30°) and ERBE CRE

How do the reanalysis predicted CF, PR, and TOA fluxes/CREs compare in the two regimes?

Regime Total Cloud Fraction (CF)

*No results from JRA-25 (ω 500 unavailable)

Ascent (65.9%)

- Overpredicted by all reanalyses
 - 4.7 14.3% except
 CFSR (-7.7%)
- More convective-type clouds are predicted by the reanalyses

Descent (59.8%)

- Underpredicted by all reanalyses
 - □ -3.7 to -16.6%
- Fewer MBL stratiform clouds are predicted by the reanalyses

Regime PR analysis

TRMM PDF in black

- Higher PRs in the ascent regime (8.37) vs. 1.03 mm/day)... suggests different cloud types
- On average, PRs are over predicted by 0.72 and 0.37 mm/day for the ascent and descent regime, respectively

Observations

- **Ascent regime PRs are normally** distributed with a peak ~8 mm/day
- **Descent** regimes PRs are skewed to the left (lower PRs)

Reanalyses

- **Ascent regime: PRs are normally** distributed with a similar peak, but tend to underpredict PRs from 4-6 mm/day (CFSR overpredict PRs >~10 mm/day)
- **Descent** regime: different distributions; underpredict PR < 0.6 mm/day

Descent

Ascent Regime TOA fluxes and CREs

- Large all-sky SWUP negative bias in CFSR contributes to the large bias in SW CRE (smaller energy loss)
 - Similar to the LW CRF (smaller energy gain)

Radiative fluxes are consistent with CF results!

- Lositive states in the air say, sover in the produces a stronger SW CRE (larger energy loss)
 - Similarly, less OLR relates to a stronger LW CRE (larger energy gain)
 - Net CRE negatively biased -> larger energy loss

d)

Descent Regime TOA fluxes and CREs

- Calculated all-sky SWUP in CFSR is NOT consistent with CF (need info about cloud water path/optical depth)
- Radiation fluxes are consistent with CF results in MERRA!
 - OLK positively blased -> weaker Lw CKE (less energy gained)
 - Weaker Net CRE (SW CRE stronger than LW CRE)

Task III: Comparison at two ARM sites

Sites are within or adjacent to dynamic regimes

- Azores (Graciosa Island, Eastern North Atlantic, ENA)
 - ⁹ 39° 5' 29.68" N, 28° 1' 32.34" W
 - 19 months of data from 06/2009 12/2010
 - Low-level marine BL stratocumulus clouds
- Nauru Island (Tropical Western Pacific, TWP)
 - o° 31' 15.6" S, 166° 54' 57.60" E
 - 9 years of data from 03/2000 02/2009
 - Deep convective clouds

Azores (Graciosa Island, Eastern North Atlantic)

- Observed CF ~70%
 - Reanalyses underpredict
- Observed SWDN ~162 W/m²
 - Reanalyses overnredict

Although the reanalyses may be biased, their results are physically consistent:

b)

lower CF → more surface SW transmission => less surface LWDN (related to cloud base temp/height)

(except MERRA)

- Reduce effects of latitude and the changes in SW flux
- Observed LWDN ~358 W/m²
 - Reanalyses underpredict

Nauru Island (Tropical Western Pacific)

- Observed CF ~56%
 - Reanalyses overpredict (except CFSR)

Observed SWDN ~247

Although the reanalyses may be biased, their results are physically consistent:

higher CF → less surface SW transmission → more LWDN

CERES EBAF (417.6)

- Observed SW transmission ~0.84
 - Reanalyses underpredict (except CFSR and MERRA)
- Observed LWDN ~417-421 W/m²
 - Reanalyses produce various results

Azores vs. Nauru

- At Azores compared to Nauru:
 - ~15% higher CF
 - ~20% less surface SW transmission
 - ~60 W/m² less LW radiation emitted to the surface
- Less variation in CF and surface radiation fluxes at Nauru compared to Azores
 - Presumably due to small seasonal and diurnal variations in cloud properties (e.g. cloud base temperature) and SST

The take away message...

- Issues still remain in parameterizing convective and MBL clouds, as well as their impact on the radiation budget
 - Advancement in convective-type cloud parameterizations is slow due to their complexity/inhomogeneity (Wagner and Graf 2012)
 - Treatment of MBL stratus clouds in climate models is considered a large source of uncertainty in predicting any potential future climate change (Wielicki et al. 1995; Bony and Dufrense 2005)
 - Including aerosol effects on cloud microphysics and dynamics (Wood 2012)

Supplemental

